Evidentemente se lograrán nuevas formas de energía fotovoltaica. Llegará un momento (como de costumbre será lento, pero inexorable) en que se superará la tecnología de los paneles solares tal y como los conocemos, a base de silicones. He aquí dos notas sobre estudios en curso. El tiempo, dirá… DCA
**********************************************************
Científicos del MIT han logrado crear una planta doméstica que emite luz natural, según han confirmado en su página web.
En las primeras pruebas, las plantas apenas brillaban 45 minutos, pero se ha logrado extender hasta cuatro horas. Este procedimiento no implica el uso de una ingeniería genética para crear plantas dotadas de un gen, sino que se basa en la técnica de la nanotecnología.
Los investigadores han creado nanopartículas a partir de luciferina, un compuesto en los animales que emiten luz natural, como las luciérnagas o los peces abisales. Estos componentes no dañan a las plantas ya que se introducen en ella mediante una cámara a presión.
Al sumergir la planta en estas nanopartículas de luciferina, el compuesto entra en la planta a través de sus poros y se almacena en sus células, produciendo la sustancia de manera natural. Este sistema, además, permite introducir otras nanopartículas como una proteína inhibidora de la luciferasa bajo luminosidad ambiental. Este proceso permite a las plantas encenderse a medida que oscurece.
*********************************************************************
MÁS EXPLORACIÓN….
La anguila eléctrica inspira una nueva fuente de energía biocompatible. – Científicos de la Universidad de Michigan han creado un sistema con hidrogeles que imita a las células de la anguila eléctrica encargadas de producir las descargas. El avance se podría aplicar para generar energía en robots blandos y en implantes dentro del ser humano.
SINC | | 13 diciembre 2017
La integración de la tecnología dentro de organismos vivos requiere fuentes energéticas que sean biocompatibles, flexibles y capaces de aprovechar la energía química del interior de los sistemas biológicos. Las baterías convencionales no se diseñan pensando en estos criterios, pero la naturaleza sí ofrece algunos ejemplos.
Se ha creado un sistema con gotas de hidrogel que imita al de las células de la anguila eléctrica encargadas de las descargas
Uno de ellos es la anguila eléctrica (Electrophorus electricus), capaz de generar diferencias de potencial de hasta 600 voltios y corrientes de 1 amperio, con los que logra aturdir a sus presas. Su secreto son los electrocitos, unas células especializadas con forma de disco que se apilan para producir grandes descargas.
Ahora, un equipo internacional de investigadores liderado desde la Universidad de Michigan (EE UU) ha creado un sistema a base de gotas de hidrogel, generadas por impresión 3D sobre un sustrato plástico, que imitan el funcionamiento de los electrocitos.
‘Órgano’ eléctrico artificial inspirado en el de las anguilas. Con una impresora 3D se depositan matrices de geles sobre dos sustratos de plástico. En uno se ponen geles alternos de alta salinidad y baja salinidad (rojos y azules, respectivamente), y en el otro, los geles selectivos de cationes y aniones (verdes y amarillos).
Cuando se superponen, se conectan para formar un circuito de 612 células de gel que produce hasta 110 voltios. / Thomas Schroeder y Anirvan Guha
Después, el control de la descarga se realiza mediante un proceso de plegado parecido al de la papiroflexia. En concreto, mediante el llamado pliegue de mapa de Miura (inventado por el astrofísico japonés Koryo Miura), un tipo de doblez utilizado para desplegar los paneles solares de los satélites.
“Aquí presentamos un concepto de energía, inspirado en el de las anguilas, que usa gradientes de iones entre diminutos compartimentos de hidrogel de poliacrilamida delimitados por membranas selectivas de cationes y aniones”, explican los autores en su estudio, publicado esta semana en la revista Nature.
Morfología y mecanismo de acción del órgano eléctrico de la anguila y el ‘órgano’ eléctrico artificial creado por los investigadores. / Michael Mayer et al./Nature
Sobre un primer sustrato se deposita una matriz de gotas de gel de forma alterna, unas con alta salinidad y otras con baja salinidad; y se pone otra matriz con los geles selectivos de aniones y cationes sobre un segundo sustrato. Cuando se superponen, se conectan para formar un circuito plegado que genera hasta 110 voltios.
Sistema blando, flexible y biocompatible
“A diferencia de las baterías típicas, estos sistemas son blandos, flexibles, transparentes y potencialmente biocompatibles”, destaca el autor principal del trabajo, Michael Mayer, asociado a la Universidad de Michigan y también biofísico en la Universidad de Friburgo (Suiza).
Las características de este producto apuntan que los futuros órganos eléctricos artificiales, cuando estén plenamente desarrollados, se podrán aplicar en robots blandos, así como en la activación de implantes de próxima generación como marcapasos, biosensores avanzados o dispositivos protésicos en sistemas híbridos vivos y no vivos.
“Los órganos eléctricos de las anguilas son increíblemente sofisticados, mucho mejores para generar energía que este sistema”, reconoce Mayer, “pero lo importante aquí ha sido poder replicar los conceptos básicos del proceso».
Los geles se ponen en contacto mediante un plegado de Miura. / Thomas Schroeder and Anirvan Guha
Referencia bibliográfica:
Michael Mayer et al. “An electric-eel-inspired soft power source from stacked hydrogels”. Nature, 13 de diciembre de 2017. Doi: 10.1038/nature24670.