El uso de nanotecnología se hace cada vez más patente en ámbitos tan variados como la química, física, medicina y electrónica. Actualmente, un equipo de investigadores del Centro de Investigación en Química Aplicada (CIQA), México, busca aplicar los beneficios de las nanopartículas en la agricultura, a través del diseño y creación de nanopesticidas y nanofertilizantes a base de nanopartículas metálicas.
por Montserrat Muñoz
Martes, 24 de Mayo del 2016.
Las nanopartículas metálicas cuentan con propiedades antimicrobianas y antifúngicas, por lo que su uso en pesticidas resulta adecuado; sin embargo, cuando son utilizadas en mucho menor volumen también tienen características que las hacen micronutrientes, por lo que se emplean como fertilizantes que promueven el crecimiento de la planta.
La mejora en la productividad, la optimización de recursos y la obtención en general de mejores cultivos son los principales beneficios que las nanopartículas tienen en las plantas, compartieron en entrevista para Agencia Informativa Conacyt los doctores Ricardo Hugo Lira Saldívar e Ileana Vera Reyes.
“Queremos generar información que le pueda ser útil a un formulador de productos químicos para poder aplicar nanoproductos”, señaló el investigador.
El principal objetivo es realizar investigación básica y aplicada, así como otros procesos tecnológicos innovadores, a la vez que conjuga estos quehaceres con la formación de recursos humanos especializados en ámbitos de química, polímeros y materiales avanzados, entre otros.
Nanopesticidas
En el afán de “encontrar productos que tengan un menor impacto ambiental y que sean más amigables con los ecosistemas”, el doctor Ricardo Hugo Lira Saldívar, perteneciente al Departamento de Plásticos en la Agricultura del CIQA, trabaja en un nanopesticida a base de nanopartículas metálicas y derivadas del carbono.
“Este nanopesticida tiene como principal objetivo utilizar cantidades mucho más pequeñas de producto que puedan tener un efecto antimicrobiano, ya sea contra hongos, bacterias y hasta levaduras”, acotó el investigador.
Este proyecto surge como una alternativa al uso de agroquímicos convencionales, mismos que derivan en una alta acumulación de pesticidas en cultivos, suelo, aguas y en el consumidor, humano o animal, quien sufre los efectos de toxicidad. Asimismo, se busca reducir los costos, ya que las nanopartículas se aplicarían en un volumen muy inferior —partes por millón— a los agroquímicos actuales, aplicados en gramos.
Lira Saldívar señaló que al momento utilizan nanopartículas de plata, cobre, zinc y fierro, para erradicar la presencia de tres bacterias y dos hongos, elegidos por tener los mayores impactos económicos en las plantas seleccionadas. Los cultivos con que se está trabajando son algunas solanáceas como tomate y chiles, y cucurbitáceas como melón y pepino.
El mayor reto de este proyecto, señaló el también miembro nivel I del Sistema Nacional de Investigadores (SNI), es ser muy eficientes en la penetración de las nanopartículas en la planta, por lo cual se siguen estudiando las maneras de poder dispersarlas adecuadamente en el medio acuoso para su aplicación.
Nanofertilizantes
La doctora Ileana Vera Reyes colabora en un proyecto para crear fertilizantes a base de nanopartículas metálicas como zinc, fierro y cobre, para que sirvan como micronutrientes de las plantas.
La investigadora, quien se integró al CIQA como parte del Programa de Cátedras de Conacyt, busca probar nuevos compuestos como promotores de crecimiento de las plantas, así como fuentes sustentables de generación de otros agroinsumos.
Este proyecto también se trabaja con personal del Departamento de Materiales Avanzados del mismo centro de investigación.
Dado que las nanopartículas metálicas resultan tóxicas en cualquier célula, se deben manejar cuidadosamente las concentraciones de las mismas cuando son utilizadas como fertilizante.
“Dentro del proyecto tenemos que ver todas las variables, ventajas y desventajas que pueden tener. La clave es ver qué concentraciones son las óptimas para que crezcan las plantas.
Quince partes por millón hacia arriba comienzan a tener características diferentes y esto lo asociamos a respuestas bioquímicas que dicen que le estamos causando estrés oxidativo a la planta, lo que nos llevará a que no se desarrolle de manera adecuada”, explicó la doctora.
En resumen, el proyecto de nanofertilizantes debe encontrar una cantidad de nanopartículas ideal para no envenenar la planta, elegir el tamaño adecuado de las nanopartículas y el mejor método de aplicación.
Por ejemplo, hasta ahora se ha demostrado que las concentraciones de cinco a 10 partes por millón son las más adecuadas para promover el crecimiento del cultivo del tomate. Sin embargo, la científica señaló que cada cultivo tendría que tener su lectura, por lo que la cantidad de producto a aplicar puede variar.
Al momento se está trabajando en ensayos in vitro para luego pasar a cultivos más grandes e invernaderos. “Queremos lograr una planta sana, con proporciones adecuadas y mayor porcentaje de germinación, así como mejorar el índice de vigor, y lograr un crecimiento más rápido”.
Vera Reyes mencionó que el zinc dentro de la planta tiene un papel esencial, pues “está involucrado en la producción de ácido indolacético, que tiene que ver con el crecimiento de la raíz. Lo que buscamos es que haya ese crecimiento pero que las plantas sean normales”.
Con información de CONACYT